注册

用Kotlin通杀“一切”单位换算

用Kotlin通杀“一切”单位换算之存储容量


前言


在之前的文章《用Kotlin Duration来优化时间单位换算》
中,用Duration可以很方便的进行时间的单位换算和运算。我忽然想到平时的工作中经常用到的换算和运算。(长度单位m,cm;质量单位 kg,g,lb;存储容量单位 mb,gb,tb 等等)


//进率为1024
val tenMegabytes = 10 * 1024 * 1024 //10mb
val tenGigabytes = 10 * 1024 * 1024 * 1024 //10gb

加入这样的业务代码后阅读性就变差了,能否有像Duration一样的api实现下面这样的代码呢?


fun main() {
1.kg = 2.20462262.lb; 1.m = 100.cm

val fiftyMegabytes = 50.mb
val divValue = fiftyMegabytes - 30.mb
// 20mb
val timesValue = fiftyMegabytes * 2.4
// 120mb

// 1G文件 再增加2个50mb的数据空间
val fileSpace = fiftyMegabytes * 2 + 1.gb
RandomAccessFile("fileName","rw").use {
it.setLength(fileSpace.inWholeBytes)
it.write(...)
}
}

下面我们通过分析Duration源码了解原理,并且实现存储容量单位DataSize的换算和运算。


简单拆解Duration


kotlin没有提供,要做到上面的api那么我不会啊,但是我看到Duration可以做到,那我们来看看它的原理,进行仿写就行了。



  1. 枚举DurationUnit是用来定义时间不同单位,方便换算和转换的(详情看源码或上篇文)。
  2. Duration是如何做到不同单位的数据换算的,先看看Duration的创建函数和构造函数。toDuration把当前的值通过convertDurationUnit把时间换算成nanos或millis的值,再通过shl运算用来记录单位。
    //Long创建 Duration
    public fun Long.toDuration(unit: DurationUnit): Duration {
    //最大支持的 nanos值
    val maxNsInUnit = convertDurationUnitOverflow(MAX_NANOS, DurationUnit.NANOSECONDS, unit)
    //当前值如果在最大和最小值中间 表示不会溢出
    if (this in -maxNsInUnit..maxNsInUnit) {
    //创建 rawValue 是Nanos的 Duration
    return durationOfNanos(convertDurationUnitOverflow(this, unit, DurationUnit.NANOSECONDS))
    } else {
    //创建 rawValue 是millis的 Duration
    val millis = convertDurationUnit(this, unit, DurationUnit.MILLISECONDS)
    return durationOfMillis(millis.coerceIn(-MAX_MILLIS, MAX_MILLIS))
    }
    }
    // 用 nanos
    private fun durationOfNanos(normalNanos: Long) = Duration(normalNanos shl 1)
    // 用 millis
    private fun durationOfMillis(normalMillis: Long) = Duration((normalMillis shl 1) + 1)
    //不同os平台实现,肯定是 1小时60分 1分60秒那套算法
    internal expect fun convertDurationUnit(value: Long, sourceUnit: DurationUnit, targetUnit: DurationUnit): Long


  3. Duration是一个value class用来提升性能的,通过rawValue还原当前时间换算后的nanos或millis的数据value。为何不全部都用Nanos省去了这些计算呢,根据代码看应该是考虑了Nanos的计算会溢出。用一个long值可以还原构造对象前的所有参数,这代码设计真牛逼。
    @JvmInline
    public value class Duration internal constructor(private val rawValue: Long) : Comparable<Duration> {
    //原始最小单位数据
    private val value: Long get() = rawValue shr 1
    //单位鉴别器
    private inline val unitDiscriminator: Int get() = rawValue.toInt() and 1
    private fun isInNanos() = unitDiscriminator == 0
    private fun isInMillis() = unitDiscriminator == 1
    //还原的最小单位 DurationUnit对象
    private val storageUnit get() = if (isInNanos()) DurationUnit.NANOSECONDS else DurationUnit.MILLISECONDS


  4. Duration是如何做到算术运算的,是通过操作符重载实现的。不同单位Duration,持有的数据是同一个单位的那么是可以互相运算的,我们后面会着重介绍和仿写。
  5. Duration是如何做到逻辑运算的(>,<,>=,<=),构造函数实现了接口Comparable<Duration>重写了operator fun compareTo(other: Duration): Int,返回1,-1,0


Duration主要依靠对象内部持有的rawValue: Long,由于value的单位是“相同”的,就可以实现不同单位的换算和运算。



存储容量单位换算设计



  1. 存储容量的单位一般有比特(b),字节(B),千字节(KB),兆字节(MB),千兆字节(GB),太字节(TB),拍字节(PB),艾字节(EB),泽字节(ZB),尧字节(YB)
    ,考虑到实际应用和Long的取值范围我们最大支持PB即可。
    enum class DataUnit(val shortName: String) {
    BYTES("B"),
    KILOBYTES("KB"),
    MEGABYTES("MB"),
    GIGABYTES("GB"),
    TERABYTES("TB"),
    PETABYTES("PB")
    }


  2. 对于存储容量来说最小单位我们就定为Bytes,最大支持到PB,然后可以省去对数据过大的溢出的"单位鉴别器"设计。(注意使用pb时候,>= 8192.pb就会溢出)
    @JvmInline
    value class DataSize internal constructor(private val rawBytes: Long)


  3. 参照Duration在创建和最后单位换算时候都用到了convertDurationUnit函数,接受原始单位和目标单位。另外考虑到可能出现换算溢出使用Math.multiplyExact来抛出异常,防止数据计算异常无法追溯的问题。
    /** Bytes per Kilobyte.*/
    private const val BYTES_PER_KB: Long = 1024
    /** Bytes per Megabyte.*/
    private const val BYTES_PER_MB = BYTES_PER_KB * 1024
    /** Bytes per Gigabyte.*/
    private const val BYTES_PER_GB = BYTES_PER_MB * 1024
    /** Bytes per Terabyte.*/
    private const val BYTES_PER_TB = BYTES_PER_GB * 1024
    /** Bytes per PetaByte.*/
    private const val BYTES_PER_PB = BYTES_PER_TB * 1024

    internal fun convertDataUnit(value: Long, sourceUnit: DataUnit, targetUnit: DataUnit): Long {
    val valueInBytes = when (sourceUnit) {
    DataUnit.BYTES -> value
    DataUnit.KILOBYTES -> Math.multiplyExact(value, BYTES_PER_KB)
    DataUnit.MEGABYTES -> Math.multiplyExact(value, BYTES_PER_MB)
    DataUnit.GIGABYTES -> Math.multiplyExact(value, BYTES_PER_GB)
    DataUnit.TERABYTES -> Math.multiplyExact(value, BYTES_PER_TB)
    DataUnit.PETABYTES -> Math.multiplyExact(value, BYTES_PER_PB)
    }
    return when (targetUnit) {
    DataUnit.BYTES -> valueInBytes
    DataUnit.KILOBYTES -> valueInBytes / BYTES_PER_KB
    DataUnit.MEGABYTES -> valueInBytes / BYTES_PER_MB
    DataUnit.GIGABYTES -> valueInBytes / BYTES_PER_GB
    DataUnit.TERABYTES -> valueInBytes / BYTES_PER_TB
    DataUnit.PETABYTES -> valueInBytes / BYTES_PER_PB
    }
    }

    internal fun convertDataUnit(value: Double, sourceUnit: DataUnit, targetUnit: DataUnit): Double {
    val valueInBytes = when (sourceUnit) {
    DataUnit.BYTES -> value
    DataUnit.KILOBYTES -> value * BYTES_PER_KB
    DataUnit.MEGABYTES -> value * BYTES_PER_MB
    DataUnit.GIGABYTES -> value * BYTES_PER_GB
    DataUnit.TERABYTES -> value * BYTES_PER_TB
    DataUnit.PETABYTES -> value * BYTES_PER_PB
    }
    require(!valueInBytes.isNaN()) { "DataUnit value cannot be NaN." }
    return when (targetUnit) {
    DataUnit.BYTES -> valueInBytes
    DataUnit.KILOBYTES -> valueInBytes / BYTES_PER_KB
    DataUnit.MEGABYTES -> valueInBytes / BYTES_PER_MB
    DataUnit.GIGABYTES -> valueInBytes / BYTES_PER_GB
    DataUnit.TERABYTES -> valueInBytes / BYTES_PER_TB
    DataUnit.PETABYTES -> valueInBytes / BYTES_PER_PB
    }
    }


  4. 扩展属性和构造DataSize,rawBytes是Bytes因此所有的目标单位设置为DataUnit.BYTES,而原始单位就通过调用者告诉convertDataUnit
    fun Long.toDataSize(unit: DataUnit): DataSize {
    return DataSize(convertDataUnit(this, unit, DataUnit.BYTES))
    }
    fun Double.toDataSize(unit: DataUnit): DataSize {
    return DataSize(convertDataUnit(this, unit, DataUnit.BYTES).roundToLong())
    }
    inline val Long.bytes get() = this.toDataSize(DataUnit.BYTES)
    inline val Long.kb get() = this.toDataSize(DataUnit.KILOBYTES)
    inline val Long.mb get() = this.toDataSize(DataUnit.MEGABYTES)
    inline val Long.gb get() = this.toDataSize(DataUnit.GIGABYTES)
    inline val Long.tb get() = this.toDataSize(DataUnit.TERABYTES)
    inline val Long.pb get() = this.toDataSize(DataUnit.PETABYTES)

    inline val Int.bytes get() = this.toLong().toDataSize(DataUnit.BYTES)
    inline val Int.kb get() = this.toLong().toDataSize(DataUnit.KILOBYTES)
    inline val Int.mb get() = this.toLong().toDataSize(DataUnit.MEGABYTES)
    inline val Int.gb get() = this.toLong().toDataSize(DataUnit.GIGABYTES)
    inline val Int.tb get() = this.toLong().toDataSize(DataUnit.TERABYTES)
    inline val Int.pb get() = this.toLong().toDataSize(DataUnit.PETABYTES)

    inline val Double.bytes get() = this.toDataSize(DataUnit.BYTES)
    inline val Double.kb get() = this.toDataSize(DataUnit.KILOBYTES)
    inline val Double.mb get() = this.toDataSize(DataUnit.MEGABYTES)
    inline val Double.gb get() = this.toDataSize(DataUnit.GIGABYTES)
    inline val Double.tb get() = this.toDataSize(DataUnit.TERABYTES)
    inline val Double.pb get() = this.toDataSize(DataUnit.PETABYTES)


  5. 换算函数设计
    Duration用toLong(DurationUnit)或者toDouble(DurationUnit)来输出指定单位的数据,inWhole系列函数是对toLong(DurationUnit) 的封装。toLong和toDouble实现就比较简单了,把convertDataUnit传入输出单位,而原始单位就是rawValue的单位DataUnit.BYTES
    toDouble需要输出更加精细的数据,例如: 512mb = 0.5gb。
    val inWholeBytes: Long
    get() = toLong(DataUnit.BYTES)
    val inWholeKilobytes: Long
    get() = toLong(DataUnit.KILOBYTES)
    val inWholeMegabytes: Long
    get() = toLong(DataUnit.MEGABYTES)
    val inWholeGigabytes: Long
    get() = toLong(DataUnit.GIGABYTES)
    val inWholeTerabytes: Long
    get() = toLong(DataUnit.TERABYTES)
    val inWholePetabytes: Long
    get() = toLong(DataUnit.PETABYTES)

    fun toDouble(unit: DataUnit): Double = convertDataUnit(bytes.toDouble(), DataUnit.BYTES, unit)
    fun toLong(unit: DataUnit): Long = convertDataUnit(bytes, DataUnit.BYTES, unit)



操作符设计


在Kotlin 中可以为类型提供预定义的一组操作符的自定义实现,被称为操作符重载。这些操作符具有预定义的符号表示(如 + 或
*)与优先级。为了实现这样的操作符,需要为相应的类型提供一个指定名称的成员函数或扩展函数。这个类型会成为二元操作符左侧的类型及一元操作符的参数类型。


如果函数不存在或不明确,则导致编译错误(编译器会提示报错)。下面为常见操作符对照表:


操作符函数名说明
+aa.unaryPlus()一元操作 取正
-aa.unaryMinus()一元操作 取负
!aa.not()一元操作 取反
a + ba.plus(b)二元操作 加
a - ba.minus(b)二元操作 减
a * ba.times(b)二元操作 乘
a / ba.div(b)二元操作 除

算术运算支持



  1. 这里用算术运算符+实现来举例:假如DataSize对象需要重载操作符+
    val a = DataSize(); val c: DataSize = a + b


  2. 需要定义扩展函数1或者添加成员函数2
    1. operator fun DataSize.plus(other: T): DataSize {...}
    2. class DataSize { operator fun plus(other: T): DataSize {...} }


  3. 函数中的参数other: T表示b的对象类型,例如
    // val a: DataSize; val b: DataSize; a + DataSize()
    operator fun DataSize.plus(other: DataSize): DataSize {...}
    // val a: DataSize; val b: Int; a + 1
    operator fun DataSize.plus(other: Int): DataSize {...}


  4. 为了阅读性,Duration不会和同类型的对象乘除法运算,而使用了Int或Double,因此重载运算符用了operator fun times(scale: Int): Duration
  5. 那么在DataSize中我们也重载(+,-,*,/),并且(*,/)重载的参数只支持Int和Double即可
    operator fun unaryMinus(): DataSize {
    return DataSize(-this.bytes)
    }
    operator fun plus(other: DataSize): DataSize {
    return DataSize(Math.addExact(this.bytes, other.bytes))
    }

    operator fun minus(other: DataSize): DataSize {
    return this + (-other) // a - b = a + (-b)
    }

    operator fun times(scale: Int): DataSize {
    return DataSize(Math.multiplyExact(this.bytes, scale.toLong()))
    }

    operator fun div(scale: Int): DataSize {
    return DataSize(this.bytes / scale)
    }

    operator fun times(scale: Double): DataSize {
    return DataSize((this.bytes * scale).roundToLong())
    }

    operator fun div(scale: Double): DataSize {
    return DataSize((this.bytes / scale).roundToLong())
    }

    上面的操作符重载中minus(),我们使用了 plus()unaryMinus()重载组合a-b = a+(-b),这样我们可以多一个-DataSize的操作符

逻辑运算支持



  • (>,<,>=,<=)让DataSize构造函数实现了接口Comparable<DataSize>重写了operator fun compareTo(other: DataSize): Int,返回rawBytes对比值即可。
  • (==,!=)通过equals(other)函数实现的,value class默认为rawBytes的对比,可以通过java字节码看到。kotlin 1.9之前不支持重写value classs的equals和hashCode
    value class DataSize internal constructor(private val bytes: Long) : Comparable<DataSize> {
    override fun compareTo(other: DataSize): Int {
    return this.bytes.compareTo(other.bytes)
    }
    //示例
    600.mb > 0.5.gb //true
    512.mb == 0.5.gb




操作符重载的目的是为了提升阅读性,并不是所有对象为了炫酷都可以用操作符重载,滥用反而会增加代码的阅读难度。例如给DataSize添加*操作符,5mb * 2mb 就让人头大。



获取字符串形式


为了方便打印和UI展示,一般我们需要重写toSting。Duration的toSting不需要指定输出单位,可以详细的输出当前对象的字符串格式(1h 0m 45.677s)算法比较复杂。我不太会,就简单实现指定输出单位的toString(DataUnit)


 override fun toString(): String = String.format("%dB", rawBytes)

fun toString(unit: DataUnit, decimals: Int = 2): String {
require(decimals >= 0) { "decimals must be not negative, but was $decimals" }
val number = toDouble(unit)
if (number.isInfinite()) return number.toString()
val newDecimals = decimals.coerceAtMost(12)
return DecimalFormat("0").run {
if (newDecimals > 0) minimumFractionDigits = newDecimals
roundingMode = RoundingMode.HALF_UP
format(number) + unit.shortName
}
}

单元测试


功能都写好了需要验证期望的结果和实现的功能是否一直,那么这个时候就用单元测试最好来个100%覆盖。


class ExampleUnitTest {
@Test
fun data_size() {
val dataSize = 512.mb

println("format bytes:$dataSize")
// format bytes:536870912B
println("format kb:${dataSize.toString(DataUnit.KILOBYTES)}")
// format kb:524288.00KB
println("format gb:${dataSize.toString(DataUnit.GIGABYTES)}")
// format gb:0.50GB
// 单位换算
assertEquals(536870912, dataSize.inWholeBytes)
assertEquals(524288, dataSize.inWholeKilobytes)
assertEquals(512, dataSize.inWholeMegabytes)
assertEquals(0, dataSize.inWholeGigabytes)
assertEquals(0, dataSize.inWholeTerabytes)
assertEquals(0, dataSize.inWholePetabytes)
}

@Test
fun data_size_operator() {
val dataSize1 = 512.mb
val dataSize2 = 3.gb

val unaryMinusValue = -dataSize1 //取负数
println("unaryMinusValue :${unaryMinusValue.toString(DataUnit.MEGABYTES)}")
// unaryMinusValue :-512.00MB

val plusValue = dataSize1 + dataSize2 //+
println("plus :${plusValue.toString(DataUnit.GIGABYTES)}")
// plus :3.50GB

val minusValue = dataSize1 - dataSize2 // -
println("minus :${minusValue.toString(DataUnit.GIGABYTES)}")
// minus :-2.50GB

val timesValue = dataSize1 * 2 //乘法
println("times :${timesValue.toString(DataUnit.GIGABYTES)}")
// times :1.00GB

val divValue = dataSize2 / 2 //除法
println("div :${divValue.toString(DataUnit.GIGABYTES)}")
// div :1.50GB
}

@Test(expected = ArithmeticException::class)
fun data_size_overflow() {
8191.pb
8192.pb //溢出了不支持,如果要支持参考"单位鉴别器"设计
}

@Test
fun data_size_compare() {
assertTrue(600.mb > 0.5.gb)
assertTrue(512.mb == 0.5.gb)
}
}

总结


通过学习Kotlin Duration的源码,举一反三应用到储存容量单位转换和运算中。Duration中的拆解计算api,还有toSting算法实现就留给大家学习吧。当然了你也可以实现和Duration一样更加精细的"单位鉴别器"设计,支持ZB、YB等大单位。


另外类似的进率场景也可以实现,用Kotlin通杀“一切进率换算”。比如Degrees角度计算 -90.0.degrees == 270.0.degrees;质量计算kg和磅,两等等1.kg == 2.20462262.lb;甚至人民币汇率 (动态实现算法)8.dollar == 1.rmb 🐶


github 代码: github.com/forJrking/K…


操作符重载文档: book.kotlincn.net/text/operat…


作者:forJrking
来源:juejin.cn/post/7301145359852765218

0 个评论

要回复文章请先登录注册