注册

电视剧里的代码真能运行吗?

大家好,欢迎来到 Crossin的编程教室 !


前几天,后台老有小伙伴留言“爱心代码”。这不是Crossin很早之前发过的内容嘛,怎么最近突然又被人翻出来了?后来才知道


,原来是一部有关程序员的青春偶像剧《点燃我,温暖你》在热播,而剧中有一段关于期中考试要用程序画一个爱心的桥段。


于是出于好奇,Crossin就去看了这一集(第5集,不用谢)。这一看不要紧,差点把刚吃的鸡腿给喷出来--槽点实在太多了!


忍不住做了个欢乐吐槽向的代码解读视频,在某平台上被顶到了20个w的浏览,也算蹭了一波人家电视剧的热度吧……


下面是图文版,给大家分析下剧中出现的“爱心”代码,并且来复刻一下最后男主完成的酷炫跳动爱心。


剧中代码赏析


1. 首先是路人同学的代码:



虽然剧中说是“C语言期中考试”,但这位同学的代码名叫 draw2.py,一个典型的 Python 文件,再结合截图中的 pen.forward、pen.setpos 等方法来看,应该是用 turtle 海龟作图库来画爱心。那效果通常是这样的:

import turtle as t
t.color('red')
t.setheading(50)
t.begin_fill()
t.circle(-100, 170)
t.circle(-300, 40)
t.right(38)
t.circle(-300, 40)
t.circle(-100, 170)
t.end_fill()
t.done()



而不是剧中那个命令行下用1组成的不规则的图形。


2. 然后是课代表向路人同学展示的优秀代码:



及所谓的效果:



这确实是C语言代码了,但文件依然是以 .py 为后缀,并且 include 前面没有加上 #,这显然是没法运行的。


里面的内容是可以画出爱心的,用是这个爱心曲线公式:



然后遍历一个15*17的方阵,计算每个坐标是在曲线内还是曲线外,在内部就输出#或*,外部就是-


用python改写一下是这样的:

for y in range(9, -6, -1):
for x in range(-8, 9):
print('*##*'[(x+10)%4] if (x*x+y*y-25)**3 < 25*x*x*y*y*y else '-', end=' ')
print()

效果:



稍微改一下输出,还能做出前面那个全是1的效果:

for y in range(9, -6, -1):
for x in range(-8, 9):
print('1' if (x*x+y*y-25)**3 < 25*x*x*y*y*y else ' ', end=' ')
print()


但跟剧中所谓的效果相去甚远。


3. 最后是主角狂拽酷炫D炸天的跳动爱心:



代码有两个片段:




但这两个片段也不C语言,而是C++,且两段并不是同一个程序,用的方法也完全不一样。


第一段代码跟前面一种思路差不多,只不过没有直接用一条曲线,而是上半部用两个圆形,下半部用两条直线,围出一个爱心。



改写成 Python 代码:

size = 10
for x in range(size):
for y in range(4*size+1):
dist1 = ((x-size)**2 + (y-size)**2) ** 0.5
dist2 = ((x-size)**2 + (y-3*size)**2) ** 0.5
if dist1 < size + 0.5 or dist2 < size + 0.5:
print('V', end=' ')
else:
print(' ', end=' ')
print()

for x in range(1, 2*size):
for y in range(x):
print(' ', end=' ')
for y in range(4*size+1-2*x):
print('V', end=' ')
print()

运行效果:



第二段代码用的是基于极坐标的爱心曲线,是遍历角度来计算点的位置。公式是:



计算出不同角度对应的点坐标,然后把它们连起来,就是一个爱心。

from math import pi, sin, cos
import matplotlib.pyplot as plt
no_pieces = 100
dt = 2*pi/no_pieces
t = 0
vx = []
vy = []
while t <= 2*pi:
vx.append(16*sin(t)**3)
vy.append(13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t))
t += dt
plt.plot(vx, vy)
plt.show()

效果:



代码中循环时用到的2π是为了保证曲线长度足够绕一个圈,但其实长一点也无所谓,即使 π=100 也不影响显示效果,只是相当于同一条曲线画了很多遍。所以剧中代码里写下35位小数的π,还被女主用纸笔一字不落地抄写下来,实在是让程序员无法理解的迷惑行为。



但不管写再多位的π,上述两段代码都和最终那个跳动的效果差了五百只羊了个羊。


跳动爱心实现


作为一个总是在写一些没什么乱用的代码的编程博主,Crossin当然也不会放过这个机会,下面就来挑战一下用 Python 实现最终的那个效果。


1. 想要绘制动态的效果,必定要借助一些库的帮助,不然代码量肯定会让你感动得想哭。这里我们将使用之前 羊了个羊游戏 里用过的 pgzero 库。然后结合最后那个极坐标爱心曲线代码,先绘制出曲线上离散的点。

import pgzrun
from math import pi, sin, cos

no_p = 100
dt = 2*3/no_p
t = 0
x = []
y = []
while t <= 2*3:
x.append(16*sin(t)**3)
y.append(13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t))
t += dt

def draw():
screen.clear()
for i in range(len(x)):
screen.draw.filled_rect(Rect((x[i]*10+400, -y[i]*10+300), (4, 4)), 'pink')

pgzrun.go()


2. 把点的数量增加,同时沿着原点到每个点的径向加一个随机数,并且这个随机数是按照正态分布来的(半个正态分布),大概率分布在曲线上,向曲线内部递减。这样,就得到这样一个随机分布的爱心效果。

...
no_p = 20000
...
while t <= 2*pi:
l = 10 - abs(random.gauss(10, 2) - 10)
x.append(l*16*sin(t)**3)
y.append(l*(13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t)))
t += dt
...


3. 下面就是让点动起来,这步是关键,也有一点点复杂。为了方便对于每个点进行控制,这里将每个点自定义成了一个Particle类的实例。


从原理上来说,就是给每个点加一个缩放系数,这个系数是根据时间变化的正弦函数,看起来就会像呼吸的节律一样。

class Particle():
def __init__(self, pos, size, f):
self.pos = pos
self.pos0 = pos
self.size = size
self.f = f

def draw(self):
screen.draw.filled_rect(Rect((10*self.f*self.pos[0] + 400, -10*self.f*self.pos[1] + 300), self.size), 'hot pink')

def update(self, t):
df = 1 + (2 - 1.5) * sin(t * 3) / 8
self.pos = self.pos0[0] * df, self.pos0[1] * df

...

t = 0
def draw():
screen.clear()
for p in particles:
p.draw()

def update(dt):
global t
t += dt
for p in particles:
p.update(t)


4. 剧中爱心跳动时,靠中间的点波动的幅度更大,有一种扩张的效果。所以再根据每个点距离原点的远近,再加上一个系数,离得越近,系数越大。

class Particle():
...
def update(self, t):
df = 1 + (2 - 1.5 * self.f) * sin(t * 3) / 8
self.pos = self.pos0[0] * df, self.pos0[1] * df


5. 最后再用同样的方法画一个更大一点的爱心,这个爱心不需要跳动,只要每一帧随机绘制就可以了。

def draw():
...
t = 0
while t < 2*pi:
f = random.gauss(1.1, 0.1)
x = 16*sin(t)**3
y = 13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t)
size = (random.uniform(0.5,2.5), random.uniform(0.5,2.5))
screen.draw.filled_rect(Rect((10*f*x + 400, -10*f*y + 300), size), 'hot pink')
t += dt * 3


合在一起,搞定!



总结一下,就是在原本的基础爱心曲线上加上一个正态分布的随机量、一个随时间变化的正弦函数和一个跟距离成反比的系数,外面再套一层更大的随机爱心,就得到类似剧中的跳动爱心效果。


但话说回来,真有人会在考场上这么干吗?


除非真的是超级大学霸,不然就是食堂伙食太好--


吃太饱撑的……


作者:Crossin先生
链接:https://juejin.cn/post/7168388057631031332
来源:稀土掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

0 个评论

要回复文章请先登录注册