CocoaAsyncSocket源码Read(三)
这里我们就讲讲几个重要的关于SSL
的函数,其余细节可以看看注释:
- 创建SSL上下文对象:
sslContext = SSLCreateContext(kCFAllocatorDefault, kSSLServerSide, kSSLStreamType);
sslContext = SSLCreateContext(kCFAllocatorDefault, kSSLClientSide, kSSLStreamType);
这个函数用来创建一个SSL上下文,我们接下来会把配置字典tlsSettings
中所有的参数,都设置到这个sslContext
中去,然后用这个sslContext
进行TLS
后续操作,握手等。
- 给SSL设置读写回调:
status = SSLSetIOFuncs(sslContext, &SSLReadFunction, &SSLWriteFunction);
这两个回调函数如下:
//读函数
static OSStatus SSLReadFunction(SSLConnectionRef connection, void *data, size_t *dataLength)
{
//拿到socket
GCDAsyncSocket *asyncSocket = (__bridge GCDAsyncSocket *)connection;
//断言当前为socketQueue
NSCAssert(dispatch_get_specific(asyncSocket->IsOnSocketQueueOrTargetQueueKey), @"What the deuce?");
//读取数据,并且返回状态码
return [asyncSocket sslReadWithBuffer:data length:dataLength];
}
//写函数
static OSStatus SSLWriteFunction(SSLConnectionRef connection, const void *data, size_t *dataLength)
{
GCDAsyncSocket *asyncSocket = (__bridge GCDAsyncSocket *)connection;
NSCAssert(dispatch_get_specific(asyncSocket->IsOnSocketQueueOrTargetQueueKey), @"What the deuce?");
return [asyncSocket sslWriteWithBuffer:data length:dataLength];
}
他们分别调用了
sslReadWithBuffer
和sslWriteWithBuffer
两个函数进行SSL
的读写处理,关于这两个函数,我们后面再来说。- 发起
SSL
连接:
status = SSLSetConnection(sslContext, (__bridge SSLConnectionRef)self);
SSL
进行一些额外的参数配置:我们根据
tlsSettings
中GCDAsyncSocketManuallyEvaluateTrust
字段,去判断是否需要手动信任服务端证书,调用如下函数status = SSLSetSessionOption(sslContext, kSSLSessionOptionBreakOnServerAuth, true);
这个函数是用来设置一些可选项的,当然不止kSSLSessionOptionBreakOnServerAuth
这一种,还有许多种类型的可选项,感兴趣的朋友可以自行点进去看看这个枚举。
接着我们按照字典中的设置项,一项一项去设置ssl上下文,类似:
status = SSLSetPeerDomainName(sslContext, peer, peerLen);
设置完这些有效的,我们还需要去检查无效的key
,万一我们设置了这些废弃的api,我们需要报错处理。
做完这些操作后,我们初始化了一个sslPreBuffer
,这个ssl
安全通道下的全局缓冲区:
sslPreBuffer = [[GCDAsyncSocketPreBuffer alloc] initWithCapacity:(1024 * 4)];
然后把prebuffer
全局缓冲区中的数据全部挪到sslPreBuffer
中去,这里为什么要这么做呢?按照我们上面的流程图来说,正确的数据流向应该是从sslPreBuffer
->prebuffer
的,楼主在这里也思考了很久,最后我的想法是,就是初始化的时候,数据的流向的统一,在我们真正数据读取的时候,就不需要做额外的判断了。
到这里我们所有的握手前初始化工作都做完了。
接着我们调用了ssl_continueSSLHandshake
方法开始SSL
握手
//SSL的握手
- (void)ssl_continueSSLHandshake
{
LogTrace();
//用我们的SSL上下文对象去握手
OSStatus status = SSLHandshake(sslContext);
//拿到握手的结果,赋值给上次握手的结果
lastSSLHandshakeError = status;
//如果没错
if (status == noErr)
{
LogVerbose(@"SSLHandshake complete");
//把开始读写TLS,从标记中移除
flags &= ~kStartingReadTLS;
flags &= ~kStartingWriteTLS;
//把Socket安全通道标记加上
flags |= kSocketSecure;
//拿到代理
__strong id theDelegate = delegate;
if (delegateQueue && [theDelegate respondsToSelector:@selector(socketDidSecure:)])
{
dispatch_async(delegateQueue, ^{ @autoreleasepool {
//调用socket已经开启安全通道的代理方法
[theDelegate socketDidSecure:self];
}});
}
//停止读取
[self endCurrentRead];
//停止写
[self endCurrentWrite];
//开始下一次读写任务
[self maybeDequeueRead];
[self maybeDequeueWrite];
}
//如果是认证错误
else if (status == errSSLPeerAuthCompleted)
{
LogVerbose(@"SSLHandshake peerAuthCompleted - awaiting delegate approval");
__block SecTrustRef trust = NULL;
//从sslContext拿到证书相关的细节
status = SSLCopyPeerTrust(sslContext, &trust);
//SSl证书赋值出错
if (status != noErr)
{
[self closeWithError:[self sslError:status]];
return;
}
//拿到状态值
int aStateIndex = stateIndex;
//socketQueue
dispatch_queue_t theSocketQueue = socketQueue;
__weak GCDAsyncSocket *weakSelf = self;
//创建一个完成Block
void (^comletionHandler)(BOOL) = ^(BOOL shouldTrust){ @autoreleasepool {
#pragma clang diagnostic push
#pragma clang diagnostic warning "-Wimplicit-retain-self"
dispatch_async(theSocketQueue, ^{ @autoreleasepool {
if (trust) {
CFRelease(trust);
trust = NULL;
}
__strong GCDAsyncSocket *strongSelf = weakSelf;
if (strongSelf)
{
[strongSelf ssl_shouldTrustPeer:shouldTrust stateIndex:aStateIndex];
}
}});
#pragma clang diagnostic pop
}};
__strong id theDelegate = delegate;
if (delegateQueue && [theDelegate respondsToSelector:@selector(socket:didReceiveTrust:completionHandler:)])
{
dispatch_async(delegateQueue, ^{ @autoreleasepool {
#pragma mark - 调用代理我们自己去https认证
[theDelegate socket:self didReceiveTrust:trust completionHandler:comletionHandler];
}});
}
//没实现代理直接报错关闭连接。
else
{
if (trust) {
CFRelease(trust);
trust = NULL;
}
NSString *msg = @"GCDAsyncSocketManuallyEvaluateTrust specified in tlsSettings,"
@" but delegate doesn't implement socket:shouldTrustPeer:";
[self closeWithError:[self otherError:msg]];
return;
}
}
//握手错误为 IO阻塞的
else if (status == errSSLWouldBlock)
{
LogVerbose(@"SSLHandshake continues...");
// Handshake continues...
//
// This method will be called again from doReadData or doWriteData.
}
else
{
//其他错误直接关闭连接
[self closeWithError:[self sslError:status]];
}
}
这个方法就做了一件事,就是SSL
握手,我们调用了这个函数完成握手:
OSStatus status = SSLHandshake(sslContext);
然后握手的结果分为4种情况:
- 如果返回为
noErr
,这个会话已经准备好了安全的通信,握手成功。
- 如果返回的
value
为errSSLWouldBlock
,握手方法必须再次调用。 - 如果返回为
errSSLServerAuthCompleted
,如果我们要调用代理,我们需要相信服务器,然后再次调用握手,去恢复握手或者关闭连接。 - 否则,返回的
value
表明了错误的code
。
其中需要说说的是errSSLWouldBlock
,这个是IO
阻塞下的错误,也就是服务器的结果还没来得及返回,当握手结果返回的时候,这个方法会被再次触发。
还有就是errSSLServerAuthCompleted
下,我们回调了代理:
[theDelegate socket:self didReceiveTrust:trust completionHandler:comletionHandler];
我们可以去手动对证书进行认证并且信任,当完成回调后,会调用到这个方法里来,再次进行握手:
//修改信息后再次进行SSL握手
- (void)ssl_shouldTrustPeer:(BOOL)shouldTrust stateIndex:(int)aStateIndex
{
LogTrace();
if (aStateIndex != stateIndex)
{
return;
}
// Increment stateIndex to ensure completionHandler can only be called once.
stateIndex++;
if (shouldTrust)
{
NSAssert(lastSSLHandshakeError == errSSLPeerAuthCompleted, @"ssl_shouldTrustPeer called when last error is %d and not errSSLPeerAuthCompleted", (int)lastSSLHandshakeError);
[self ssl_continueSSLHandshake];
}
else
{
[self closeWithError:[self sslError:errSSLPeerBadCert]];
}
}
到这里,我们就整个完成安全通道下的TLS
认证。
接着我们来看看基于CFStream
的TLS
:
因为CFStream
是上层API,所以它的TLS
流程相当简单,我们来看看cf_startTLS
这个方法:
//CF流形式的TLS
- (void)cf_startTLS
{
LogTrace();
LogVerbose(@"Starting TLS (via CFStream)...");
//如果preBuffer的中可读数据大于0,错误关闭
if ([preBuffer availableBytes] > 0)
{
NSString *msg = @"Invalid TLS transition. Handshake has already been read from socket.";
[self closeWithError:[self otherError:msg]];
return;
}
//挂起读写source
[self suspendReadSource];
[self suspendWriteSource];
//把未读的数据大小置为0
socketFDBytesAvailable = 0;
//去掉下面两种flag
flags &= ~kSocketCanAcceptBytes;
flags &= ~kSecureSocketHasBytesAvailable;
//标记为CFStream
flags |= kUsingCFStreamForTLS;
//如果创建读写stream失败
if (![self createReadAndWriteStream])
{
[self closeWithError:[self otherError:@"Error in CFStreamCreatePairWithSocket"]];
return;
}
//注册回调,这回监听可读数据了!!
if (![self registerForStreamCallbacksIncludingReadWrite:YES])
{
[self closeWithError:[self otherError:@"Error in CFStreamSetClient"]];
return;
}
//添加runloop
if (![self addStreamsToRunLoop])
{
[self closeWithError:[self otherError:@"Error in CFStreamScheduleWithRunLoop"]];
return;
}
NSAssert([currentRead isKindOfClass:[GCDAsyncSpecialPacket class]], @"Invalid read packet for startTLS");
NSAssert([currentWrite isKindOfClass:[GCDAsyncSpecialPacket class]], @"Invalid write packet for startTLS");
//拿到当前包
GCDAsyncSpecialPacket *tlsPacket = (GCDAsyncSpecialPacket *)currentRead;
//拿到ssl配置
CFDictionaryRef tlsSettings = (__bridge CFDictionaryRef)tlsPacket->tlsSettings;
// Getting an error concerning kCFStreamPropertySSLSettings ?
// You need to add the CFNetwork framework to your iOS application.
//直接设置给读写stream
BOOL r1 = CFReadStreamSetProperty(readStream, kCFStreamPropertySSLSettings, tlsSettings);
BOOL r2 = CFWriteStreamSetProperty(writeStream, kCFStreamPropertySSLSettings, tlsSettings);
//设置失败
if (!r1 && !r2) // Yes, the && is correct - workaround for apple bug.
{
[self closeWithError:[self otherError:@"Error in CFStreamSetProperty"]];
return;
}
//打开流
if (![self openStreams])
{
[self closeWithError:[self otherError:@"Error in CFStreamOpen"]];
return;
}
LogVerbose(@"Waiting for SSL Handshake to complete...");
}
source
,然后重新初始化了读写流,并且绑定了回调,和添加了runloop
。这里我们为什么要用重新这么做?看过之前
connect
篇的同学就知道,我们在连接成功之后,去初始化过读写流,这些操作之前都做过。而在这里重新初始化,并不会重新创建,只是修改读写流的一些参数,其中主要是下面这个方法,传递了一个YES
过去:if (![self registerForStreamCallbacksIncludingReadWrite:YES])
这个参数会使方法里多添加一种触发回调的方式:kCFStreamEventHasBytesAvailable
。
当有数据可读时候,触发Stream
回调。
2.接着我们用下面这个函数把TLS的配置参数,设置给读写stream:
//直接设置给读写stream
BOOL r1 = CFReadStreamSetProperty(readStream, kCFStreamPropertySSLSettings, tlsSettings);
BOOL r2 = CFWriteStreamSetProperty(writeStream, kCFStreamPropertySSLSettings, tlsSettings);
3.最后打开读写流,整个CFStream
形式的TLS
就完成了。
看到这,大家可能对数据触发的问题有些迷惑。总结一下,我们到现在一共有3种触发的回调:
- 读写
source
:这个和socket
绑定在一起,一旦有数据到达,就会触发事件句柄,但是我们可以看到在cf_startTLS
方法中我们调用了:
//挂起读写source
[self suspendReadSource];
[self suspendWriteSource];
所以,对于CFStream
形式的TLS
的读写并不是由source
触发的,而其他的都是由source
来触发。
CFStream
绑定的几种事件的读写回调函数:
static void CFReadStreamCallback (CFReadStreamRef stream, CFStreamEventType type, void *pInfo)
static void CFWriteStreamCallback (CFWriteStreamRef stream, CFStreamEventType type, void *pInfo)
这个和CFStream
形式的TLS
相关,会触发这种形式的握手,流末尾等出现的错误,还有该形式下数据到达。
因为我们在一开始的连接完成就初始化过stream
,所以非CFStream
形式下也回触发这个回调,只是不会在数据到达触发而已。
SSL
安全通道形式,绑定的SSL
读写函数:
static OSStatus SSLReadFunction(SSLConnectionRef connection, void *data, size_t *dataLength)
static OSStatus SSLWriteFunction(SSLConnectionRef connection, const void *data, size_t *dataLength)
这个函数并不是由系统触发,而是需要我们主动去调用SSLRead
和SSLWrite
两个函数,回调才能被触发。